208 research outputs found

    An Assessment of Soil’s Nutrient Deficiencies and Their Influence on the Restoration of Degraded Karst Vegetation in Southwest China

    Get PDF
    The distribution of karst landscapes over the Earth's surface, to a large extent, follows the distribution of carbonate (limestone and dolomite) and gypsum rocks and together these make up about 12% of the Earth's land area, and the largest karst region in to world is in Southwestern China. Characterized by a unique set of landforms, these geographical areas also differ from other geomorphic regions by the presence of cave systems in the subsurface. Unfortunately, due to human disturbances, such as deforestation, agricultural expansion, livestock overgrazing and fire, these regions have been affected by varying degrees of degradation, which could also be worsened if water and soil erosion phenomena typical of these areas are considered. Therefore, there is a need to implement measures and strategies to protect these karst areas and develop plans to restore vegetation in this region. To support local and national authorities to achieve this goal, this study aims to characterize nutrient deficiencies in degraded areas and estimate what could be the thresholds required to facilitate the restoration of vegetation in karst areas in southwest China. The results obtained confirm that the total element concentrations for Soil Organic Carbon (SOC), N, K, Ca, P, S and Mg were relatively high in the study karst area in southwest China. However, the total amounts of soil nutrients stored were very low due to the limited amount of soil identified as a consequence of previous deforestation processes undertaken within this study area and this aspect needs to be taken into consideration if aiming at a positive success of future restoration processes

    Preliminary Characterization of Underground Hydrological Processes under Multiple Rainfall Conditions and Rocky Desertification Degrees in Karst Regions of Southwest China

    Get PDF
    Karst regions are widely distributed in Southwest China and due to the complexity of their geologic structure, it is very challenging to collect data useful to provide a better understanding of surface, underground and fissure flows, needed to calibrate and validate numerical models. Without characterizing these features, it is very problematic to fully establish rainfall–runoff processes associated with soil loss in karst landscapes. Water infiltrated rapidly to the underground in rocky desertification areas. To fill this gap, this experimental work was completed to preliminarily determine the output characteristics of subsurface and underground fissure flows and their relationships with rainfall intensities (30 mm h−1, 60 mm h−1 and 90 mm h−1) and bedrock degrees (30%, 40% and 50%), as well as the role of underground fissure flow in the near-surface rainfall–runoff process. Results indicated that under light rainfall conditions (30 mm h−1), the hydrological processes observed were typical of Dunne overland flows; however, under moderate (60 mm h−1) and high rainfall conditions (90 mm h−1), hydrological processes were typical of Horton overland flows. Furthermore, results confirmed that the generation of underground runoff for moderate rocky desertification (MRD) and severe rocky desertification (SRD) happened 18.18% and 45.45% later than the timing recorded for the light rocky desertification (LRD) scenario. Additionally, results established that the maximum rate of underground runoff increased with the increase of bedrock degrees and the amount of cumulative underground runoff measured under different rocky desertification was SRD > MRD > LRD. In terms of flow characterization, for the LRD configuration under light rainfall intensity the underground runoff was mainly associated with soil water, which was accounting for about 85%–95%. However, under moderate and high rainfall intensities, the underground flow was mainly generated from fissure flow

    Desertification and Its Control along the Qinghai-Tibet Railway

    Get PDF
    The Qinghai-Tibet Railway is a magnificent project in the twenty first century. However, the problem of land desertification has arisen during the operation of the railway. Many sections of the railway roadbed are buried by sand. The ecological safety along the railway and the safe operation of the railway have attracted worldwide attention. This chapter will focus on the current situation of desertification along the Qinghai-Tibet Railway, such as key desertification sections and the temporal and spatial characteristics of the occurrence of desertification. At the same time, it introduces the characteristics of the dynamic conditions of railway desertification and the source of sand material. It is divided into two parts: biological measures and engineering measures to introduce desertification control along the railway. The biological measures focus on the selection of Lolium perenne, Festuca sinensi, Elymus breviaristatus, Elymus nutans and Poa crymophila, and other alpine native sand-fixing plant materials. The engineering measures will introduce the railway desertification comprehensive prevention and control technology system that combines solidification, resistance, and transportation

    On-chip picosecond synchrotron pulse shaper

    Full text link
    Synchrotrons are powerful and productive in revealing the spatiotemporal complexities in matter. However, X-ray pulses produced by the synchrotrons are predetermined in specific patterns and widths, limiting their operational flexibility and temporal resolution. Here, we introduce the on-chip picosecond synchrotron pulse shaper that shapes the sub-nm-wavelength hard X-ray pulses at individual beamlines, flexibly and efficiently beyond the synchrotron pulse limit. The pulse shaper is developed using the widely available silicon-on-insulator technology, oscillates in torsional motion at the same frequency or at harmonics of the storage ring, and manipulates X-ray pulses through the narrow Bragg peak of the crystalline silicon. Stable pulse manipulation is achieved by synchronizing the shaper timing to the X-ray timing using electrostatic closed-loop control. Tunable shaping windows down to 40 psps are demonstrated, allowing X-ray pulse picking, streaking, and slicing in the majority of worldwide synchrotrons. The compact, on-chip shaper offers a simple but versatile approach to boost synchrotron operating flexibility and to investigate structural dynamics from condensed matter to biological systems beyond the current synchrotron-source limit

    Audio-Visual Segmentation

    Full text link
    We propose to explore a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark (AVSBench), providing pixel-wise annotations for the sounding objects in audible videos. Two settings are studied with this benchmark: 1) semi-supervised audio-visual segmentation with a single sound source and 2) fully-supervised audio-visual segmentation with multiple sound sources. To deal with the AVS problem, we propose a novel method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage the audio-visual mapping during training. Quantitative and qualitative experiments on the AVSBench compare our approach to several existing methods from related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench.Comment: ECCV 2022; Correct the equation (3) and update the notation of the evaluation metrics in the last arxiv version; Code is available at https://github.com/OpenNLPLab/AVSBenc

    Fine-grained Audible Video Description

    Full text link
    We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.Comment: accpeted to CVPR 2023, Xuyang Shen, Dong Li and Jinxing Zhou contribute equally, code link: github.com/OpenNLPLab/FAVDBench, dataset link: www.avlbench.opennlplab.c

    Genome-wide identification and analysis of the IQM gene family in soybean

    Get PDF
    IQM, a plant-specific calmodulin-binding protein, plays multiple roles in plant growth and development. Although a comprehensive analysis has been carried out on the IQM family genes in Arabidopsis and rice, the number and functions of IQM genes in other species have not been explored. In this study, we identified 15 members of the soybean (Glycine max) IQM gene family using BLASTP tools. These members were distributed on 12 soybean chromosomes and constitute six pairs caused by fragment duplication events. According to phylogeny, the 15 genes were divided into three subfamilies (I, II, and III), and members of the same subfamily had similar gene and protein structures. Yeast two-hybrid experiments revealed that the IQ motif is critical for the binding of GmIQM proteins to GmCaM, and its function is conserved in soybean, Arabidopsis, and rice. Based on real-time PCR, the soybean IQM genes were strongly induced by PEG and NaCl, suggesting their important biological functions in abiotic stress responses. Overall, this genome-wide analysis of the soybean IQM gene family lays a solid theoretical foundation for further research on the functions of GmIQM genes and could serve as a reference for the improvement and breeding of soybean stress resistance traits
    • …
    corecore